Statistical learning  

Students will acquire the knowledge to conduct statistical analysis on a variety of data sets using a wide range of modern computerized methods. The students will learn how to recognize which tools are needed to analyze different types of datasets, how to apply these tools in each case, and how to employ diagnostics to assess the quality of their results. They will learn about statistical models, their complexity and their relative benefits depending on the available data. Some of the tools that the students will come to learn well include linear simple and multiple regression, nearest neighbors methods, shrinkage methods (ridge, lasso), dimension reduction methods (principal components), logistic regression, linear discriminant analysis, tree-based methods, model selection algorithms with criterion or by resampling techniques and clustering. The focus of the course will be less on theory and more on providing the students with as much intuition as possible and acquainting them with as many methods as possible. The course will make substantial use of the R statistical programming language and its libraries. Outcome: Not Provided
Presential
English
Statistical learning
English

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HaDEA. Neither the European Union nor the granting authority can be held responsible for them. The statements made herein do not necessarily have the consent or agreement of the ASTRAIOS Consortium. These represent the opinion and findings of the author(s).